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A B S T R A C T  

A minimal dynamical system (X, T) is called quasi-Bohr if it is a non- 
trivial equicontinuous extension of a proximal system. We show that if 
(X, T) is a minimal dynamical system which is not weakly mixing then 
some minimal proximal extension of (X,T) admits a nontrivial qu~i- 
Bohr factor. (In terms of Ellis groups the corresponding statement is: 
AG ~ = G implies weak mixing.) The converse does not hold. In fact 
there are nontrivial quasi-Bohr systems which are weakly mixing of all 
orders. Our main tool in the proof is a theorem, of independent interest, 
which enhances the general structure theorem for minimal systems. 

In troduct ion  

A well known and very useful result of the classical theory of topological dy- 

namics is a theorem of Furstenberg which asserts that  when the acting group is 

abelian the property of (2-fold) weak mixing already implies weak mixing of all 

orders. Another central result - -  this time for minimal dynamical systems but 

again with abelian acting group - -  asserts that  the system is not weakly mixing 

iff it admits a nontrivial equicontinuous factor. Unfortunately these classical 

and basic results are no longer true for general acting groups. A nonabelian 

counter example to the first theorem is provided by B. Weiss in [21], where a 

weakly mixing system (X, T) is presented such that (X • X • X, T) is not topo- 

logically transitive. (In fact the system (X, T) in this example is minimal and 

proximal.) For the second theorem a nonabelian counter example was given by 
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D. McMahon in [15]. He produced there a minimal system which is not weakly 

mixing, yet does not admit a nontrivial equicontinuous factor. 

In my book [9] I introduced the notions of generalized Bohr compactification 

and generalized strong Bohr compactification of a general group T. The idea was 

to generalize the notion of an equicontinuous factor and allow instead factors 

which are equicontinuous extensions of proximal (or strongly proximal) systems. 

Then one considers the associated compact automorphism group as a generalized 

compactification. In this way topological groups that have a small or even a 

trivial Bohr compactification may happen to admit a large generalized Bohr 

compactification. For example, it was shown in [9] that the generalized strong 

Bohr compactification of a connected semisimple Lie group G with Iwasawa 

decomposition G = KAN is isomorphic to b(A) • M, where b(A) is the Bohr 

compactification of the abelian group A and M is the centralizer of/~ in IK. 

Let us say that a minimal dynamical system (X, T) is quasi-Bohr if it is a 

nontrivial equicontinuous extension of a proximal system. In the present paper 

I show (Theorem 3.1) that for a general group T a minimal system (X, T) which 

- -  up to a proximal extension - -  does not admit a nontrivial quasi-Bohr factor 

is indeed weakly mixing. Unfortunately the converse does not hold. There are 

examples of quasi-Bohr systems which are weakly mixing of all orders. 

In Section 6 I prove a relative version (Theorem 6.6) of Theorem 3.1. It is a 

bit more technical and for that reason is treated in a separate section. 

When the acting group T is abelian the algebraic theory of minimal systems 

shows that for a minimal system (X, T) with Ellis group A the conditions (i) 

(X, T) is weakly mixing, (ii) (X, T) does not admit a nontrivial equicontinuous 

factor, and (iii) A G  ~ = G (where G is the automorphism group of the universal 

minimal T-system) are equivalent. The present work originated from a question 

raised by R. Ellis and J. Auslander about the relation between these conditions 

for non-abelian group actions. In Section 4 I compare the various notions into 

which weak mixing splits when the commutativity assumption is dropped. 

My main (new) tool in the proof of Theorem 3.1 is a theorem of indepen- 

dent interest (Theorem 2.7) which enhances the structure theorem for minimal 

systems (even in the classical abelian case) in showing that the weakly mixing 

RIC extension ~r~: Xoo ~ ~ at the top of the PI tower associated with a 

minimal system (X, T) is in fact weakly mixing of all orders (Corollary 2.9). 

An analogue of Theorem 2.7 was proved by McMahon in [16]. His proof uses 

the measure theoretical tool of RIM extensions rather than our RIC extension 

method. RIM (relative invariant  measure) extensions were introduced in Glas- 
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her [8], and results similar to those of [16] can already be deduced from the work 

by Furstenberg and Glasner [7]. 

In the final section I examine the new examples of generalized Bohr compact- 

ifications of topological groups that  arise as corollaries of recent works of Pestov 

and Glasner and Weiss. 

ACKNOWLEDGEMENT: I am indebted to Joe Auslander for a careful read- 

ing of the paper and for many suggestions that  improved both the content 

and the presentation of this work. I also thank Ethan Akin for several helpful 

e-conversations. 

1. A b r i e f  s u r v e y  o f  a b s t r a c t  t o p o l o g i c a l  d y n a m i c s  

In this section I review the necessary definitions and results from abstract topo- 

logical dynamics. For details and proofs refer to [9]. See also [2], [20] and 

[1]. A t o p o l o g i c a l  d y n a m i c a l  s y s t e m  or briefly a system is a pair (X, T), 

where X is a compact Hausdorff space and T an abstract group which acts on 

X as a group of homeomorphisms. A s u b - s y s t e m  of (X, T) is a closed in- 

variant subset Y C X with the restricted action. For a point x C X,  we let 

(gT(X) = {tx : t E T}, and (~T(X) = cls{tx : t E T}. These subsets of X are 

called the o r b i t  and o r b i t  c losu re  of x respectively. We say that  (X, T) is 

p o i n t  t r a n s i t i v e  if there exists a point x C X with a dense orbit. In that  case 

x is called a t r a n s i t i v e  po in t .  If every point is transitive we say that  (X, T) 

is a m i n i m a l  s y s t e m .  

The dynamical system (X, T) is t o p o l o g i c a l l y  t r a n s i t i v e  if for any two 

nonempty open subsets U and V of X there exists some t E T with t U N  V 
O. Clearly a point transitive system is topologically transitive and when X is 

metrizable the converse holds as well: in a metrizable topologically transitive 

system the set of transitive points is a dense G6 subset of X. 

The system (X ,T)  is weak ly  m i x i n g  if the product system (X • X , T )  

(where t (x ,x ' )  = (tx, tx'), x , x '  E X ,  t E T) is topologically transitive. The 

system (X, T) is weak ly  m i x i n g  o f  all o r d e r s  if for every n >_ 1 the product 

system (X n, T) is topologically transitive (here and in the sequel, A n, for any 

set A, denotes the cartesian product A • A • . . .  • A (n times)). 

If (Y, T) is another system then a continuous onto map 7r: X --+ Y satisfying 

t o 7r = 7r o t for every t C T is called a h o m o m o r p h i s m  of dynamical systems. 

In this case we say that  (Y, T) is a f a c t o r  of (X, T) and also that  (X, T) is an 

e x t e n s i o n  of (:~: T). With the system (X, T) we associate the induced action 
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(the hyper  sys tem associated with (X, T)) on the compact space 2 X of closed 

subsets of X equipped with the Vietoris topology. A subsystem Y of (2 X, T) is 

a quasifactor  if U{A : A E Y} = X. 

The system (X, T) can always be considered as a quasifactor of (X, T) by 

identifying x with {x}. Recall that if (X, T ) ~ ( Y ,  T) is a homomorphism then 

in general r - l :  y __+ 2 x is an upper-semi-continuous map and that ~: X -+ Y 

is open iff ~r-l: Y ~ 2 X is continuous, iff {u-l(y) : y E Y} is a quasifactor of 

(X, T). When there is no room for confusion we write X for the system (X, T). 

We assume for simplicity that our acting group T is a discrete group. /~T will 

denote the Stone-Cech compactification of T. The universal properties of/~T 

make it 

�9 a compact semigroup with right continuous multiplication (for a fixed 

p E ST the map q ~ qp, q E ST is continuous), and left continuous 

multiplication by elements of T, considered as elements of ~T (for a fixed 

t E T the map q ~ tq, q E/~T is continuous); 

�9 a dynamical system (/~T, T) under left multiplication by elements of T. 

The system (~T, T) is universal point transitive T-system; i.e. for every point 

transitive system (X, T) and a point x E X with dense orbit, there exists a ho- 

momorphism of systems (/~T, T) --+ (X, T) which sends e, the identity element 

of T, onto x. For p E /~T we let px denote the image of p under this homo- 

morphism. This defines an "action" of the semigroup/~T on every dynamical 

system. When dealing with the hyper system (2 X, T) we write p o A for the 

image of the closed subset A C X under p E /~T, to distinguish it from the 

(usually non-closed) subset pA = {px : x E A}. We always have pA C p o A. 

The compact semigroup /~T has a rich algebraic structure. For instance, 

for countable T there are 2 c minimal left (necessarily closed) ideals in /~T all 

isomorphic as systems and each serving as a universal minimal system. Each 

such minimal ideal, say M, has a subset J of 2 c idempotents such that {vM : 

v E J} is a partition of M into disjoint isomorphic (non-closed) subgroups. The 

group of dynamical system automorphisms of (M, T), G = Aut(M, T) can be 

identified with any one of the groups vM as follows: with c~ E vM we associate 

the automorphism &: (M, T) -~ (M, T) given by right multiplication &(p) = pa, 

p E M. The group G plays a central role in the algebraic theory. It carries a 

natural T1 compact topology called by Ellis the T-topology. The v-closure of a 

subset A of G consists of those/~ E G for which the set graph(/~) = {(p,p~) : 

p E M} is a subset of the closure in M • M of the set U{graph(a) : a E A}. 

It is convenient to fix a minimal left ideal M in/~T and an idempotent u E M. 
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As explained above we identify G with u M  and it follows that  for any subset 

A c G ,  

cls~A = u(u o A) = (u o A) 0 G. 

Also in this way we can consider the "action" of G on every system (X, T) 

via the action o f /3T  on X. With every minimal system (X, T) and a point 

Xo E u X  = {x E X : ux  = x} we associate a T-closed subgroup 

6(X,  x0) = {a  e C :  ax0 = x0}, 

the Ellis g r o u p  of the pointed system (X, x0). For a homomorphism 7r: X --+ Y 

with 7r(Xo) = Y0 we have 

G(X, x0) C G(Y, Y0)- 

For a r-closed subgroup F of G the d e r i v e d  g r o u p  F ~ is given by 

F '  := N{cls~O : O a T-open neighborhood of u in F}.  

F '  is a 7-closed normal (in fact characteristic) subgroup of F and it is charac- 

terized as the smallest T-closed subgroup H of F such that  F / H  is a compact 

Hausdorff topological group. 

A pair of points (x, x ')  E X x X for a system (X, T) is called p r o x i m a l  if 

there exists a net ti E T and a point z E X such that  lim t ix  = lim t ix  ~ = z (iff 

there exists p C/~T with px = px').  We denote by P the set of proximal pairs 

in X x X. We have 

P = N { T V  : V a neighborhood of the diagonal in X x X}. 

A system (X, T) is called p r o x i m a l  when P = X x X and d i s t a l  when P = A, 

the diagonal in X • X.  It is called s t r o n g l y  p r o x i m a l  when the following 

much stronger condition holds: the dynamical system (M(X) ,  T),  induced on 

the compact space M ( X )  of probability measures on X, is proximal. A minimal 

system (X, T) is called p o i n t  d i s ta l  if there exists a point x E X such that  if 

x, x I is a proximal pair then x = xq 

The r e g i o n a l l y  p r o x i m a l  r e l a t i o n  on X is defined by 

Q = N { T V  : v a neighborhood of A in X • X}. 

It is easy to verify that  Q is trivial - -  i.e. equals A iff the system is equicon- 

tinuous. More generally we set for n _> 2 

P(~) = N { T V  : V a neighborhood of the diagonal in X n } 
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and 

Q(n) = ~ { T V  : V a neighborhood of the diagonal in Xn}. 

An extension (X,T)~(Y,T)  of minimal systems is called a p r o x i m a l  

e x t e n s i o n  if the relation R~ = {(x, x') : ~r(x) = 7~(x')} satisfies R~ C P and a 

d i s t a l  e x t e n s i o n  when R .  M P = A. One can show that  every distal extension 

is open. The extension 7r is called an e q u i c o n t i n u o u s  e x t e n s i o n  if for every 

e, a neighborhood of the diagonal A = {(x,x) : x �9 X} C X • X, there exists 

a neighborhood of the diagonal 5 such that  t(5 M R~) C e for every t �9 T. The 

extension 7r is a weak ly  m i x i n g  e x t e n s i o n  when R~ as a subsystem of the 

product system (X • X, T) is topologically transitive. It is a w eak ly  m i x i n g  

e x t e n s i o n  o f  all o r d e r s  if R (n) is topologically transitive for every n _> 1; here 

n (n) : { ( X l , . . .  ,Xn)  �9 x n :  7r(xi) --- 7r(xj), 1 ~_ i , j  <_ n}. 
The n - t h  r e l a t i ve  p r o x i m a l  and r eg iona l ly  p r o x i m a l  r e l a t i o n s  are 

defined as 

p(n) = N { T V  M R(~n) : V a neighborhood of the diagonal in X n} 

and 

Q(n) = N {TV M R(n) : V a neighborhood of the diagonal in X n} 

respectively. 

The algebraic language is particularly suitable for dealing with such notions. 

For example, an extension (X,T)-Lt(Y,T) of minimal systems is a proximal 

extension iff the Ellis groups G(X, xo) = A and G(Y, Yo) = F coincide. It is 

distal iff for every y �9 Y, and x �9 ~r-l(y), 7r-l(y) --- ~(Y,y)x; iff: 

for every y = PYo �9 Y, P an element of M, 7r-l(y) --- pTr-l(y0) = 

pFxo, where F = G(Y, Y0). 

In particular (X, T) is distal iff Gx = X for some (hence every) x E X.  The ex- 

tension ~r is an equicontinuous extension iff it is a distal extension and, denoting 

~(X, x0) = A and ~(Y, Y0) = F,  

F I C A, 

in which case the compact group F/F' is the group of the g r o u p  e x t e n s i o n  

associated with the equicontinuous extension 7r. More precisely, there exists 

a minimal dynamical system J( on which the compact Hausdorff group K = 
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F / F  ~ acts as a group of automorphisms and we have the following commutative 

diagram 

, /  
Y 

where #: 2 ~ Y ~- X / K  is a group extension and so is the extension r 3? ~ 

X ~- f ( / L  with L = A/F '  C F /F '  = K. ( 2  = X iff A is a normal subgroup of 
F.) 

A minimal system (X, T) is called i n e o n t r a e t i b l e  if the union of minimal 

subsets is dense in every product system (X n, T). This is the case i f fpoGx = X 

for some (hence every) x E X and p C M. A topological group T is called 

s t r o n g l y  a m e n a b l e  if every minimal T dynamical system is incontractible, or 

equivalently if every minimal proximal T-system is trivial. This property implies 

amenability and holds for nilpotent groups. In fact, a group T is amenable iff 

every minimal strongly proximal T-system is trivial. 
r 7 r  

We say that  (X, T)-+(Y, T) is a RIC ( re l a t ive ly  i n c o n t r a c t i b l e )  e x t e n s i o n  

if: 

for every y = PYo C Y,  p an element of M, 7r -1 (y) = p o ulr -1 (Y0) = 

p o Fxo, where F = 6(Y, Y0). 

It is not hard to see that  every RIC extension is open. Every distal extension 

is RIC and it follows that  every distal extension is open. 

We have the following theorem from [5] about the interpolation of equicon- 

tinuous extensions. For a proof see [9], Theorem X.2.1. 

1.1. THEOREM: Let 7r: X --4 Y be a RIC extension of minimaI systems. Fix 
a point xo C X with uxo = xo and let Yo = 7r(Xo). Let A = ~(X, xo) and 
F = ~(Y, Yo). Then there exists a commutative diagram of pointed systems 

(X, xo) 

~1 ~ ( Z ,  zo) 

(Y, yo) 



284 E. G L A S N E R  Isr. J. Ma th .  

such that p is an equicontinuous extension with Ellis group G(Z, Zo) = A F  I and 

the extension p is an isomorphism if[ A P  = F. Moreover i f  

(X, xo) 

(z', 4) 

J /  
(Y, ~o) 

is another such diagram with p' an equicontinuous extension then there exists 

a homomorphism (Z, Zo) -+ (Z', z~). 

Let (X, T)Z~(Y, T) be a homomorphism of minimal systems; one constructs 

a commutative diagram of homomorphisms of minimal systems (the R I C -  

s h a d o w  d iag ram) ,  
0* 

X <  X * = X V Y *  

Y ~ y*  
0 

where ~r* is RIC and ~, ~* are proximal (thus we still have A = G(X, xo) = 

G(X* x *~ and F = 6(Y, y0) = G(Y*,y~)). The concrete description of these 

objects uses quasifactors and the circle operation: 

Y * = { p o F x o : p E M } c 2  X, X * = { ( x , y * ) : x E y * E Y * } C X x Y *  

and 

O(poFxo)=pyo ,  O*(x ,y*)=x ,  ~r*(x,y*)=y*, ( p E M ) ,  

where F = G(Y, Y0). The map ~9 is an isomorphisms (hence ~r = ~r*) when and 

only when ~r is already RIC. 

In particular, starting with a trivial map X ~ {*}, where {,} is the trivial 

one point system, we obtain the RIC shadow diagram 

(1.1) x - ~  x * = x v n ( x )  

{*} -~ n(x) 
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Thus II(X) = {p o Gxo : p �9 M }  C 2 x and the minimal system X*, defined as 

X* = { (pxo ,po  G x o ) : p  �9 M} C X x II(X), 

coincides with the subsystem 

{ ( x , B ) : x  �9 B �9 n(X)}  c X x n(X) .  

The system (H(X), T) is minimal and proximal and the projection map 7r: X* --+ 

II(X) is RIC, hence also open. The dynamical system (X, T) is incontractible 

iff H(X) = {*} is trivial. Note that  if X is metrizable so is 2 X. Thus in this 

case all the entries of the shadow diagram are metrizable as well. 

We say that  a minimal system (X, T) is a s t r i c t ly  P I  s y s t e m  if there is an 

ordinal U (which is countable when X is metrizable) and a family of systems 

{(W~,w~)}~_<~ such that  (i) W0 is the trivial system, (ii) for every ~ < ~ there 

exists a homomorphism r W,+I -~ W, which is either proximal or equicontin- 

uous (isometric when X is metrizable), (iii) for a limit ordinal v <_ y the system 

W. is the inverse limit of the systems {W,},<., and (iv) W, = X. We say that  

(X, T) is a P I - s y s t e m  if there exists a strictly PI system _~ and a proximal 

homomorphism 8: )~ --+ X. 

If in the definition of PI-systems we replace proximal extensions by almost 

1-1 extensions we get the notion of A I - s y s t e m s .  If we replace the proximal 

extensions by trivial extensions (i.e. we do not allow proximal extensions at 

all) we have I - sys tems .  In this terminology the structure theorem for distal 

systems (Furstenberg [6], 1963) can be stated as follows: 

1.2. THEOREM: A metric minimal sys tem is distal iff  it is an I-system. 

And the Veech-Ellis structure theorem for point distal systems (Veech [19], 

1970 and Ellis [3], 1973). 

1.3. THEOREM: A metric minimal dynamical sys tem is point distal iff  it is an 

AI-system. 

Finally we have the structure theorem for minimal systems (Ellis-Glasner- 

Shapiro [5], 1975, McMahon [15], 1976 and Veech [20], 1977). 

1.4. THEOREM (Structure theorem for minimal systems): Given a minimal 

sys tem (X, T), there exists an ordinal ~ (countable when X is metrizable) and 
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a canonically defined commutative diagram (the canonical PI-Tower) 

e~ e; e;+l 
X < Xo , X1 ... X ~ ,  X,+I . . . X , = X o ~  

Pt < oo Yo'~---~ ZI "~-~ Y1 "'" Y~'%-V~+~ Z.+I ~'~---- Y.+I "'" Y~ -- Y~  
Uv+I 

where for each u <_ 71,zr~ is RIC, p,  is isometric, 8. ,8"  are proximal and zroo is 

RIC and weakly mixing. For a limit ordinal v, X , ,  Y~, 7r, etc. are the inverse 

limits (or joins) of X~,Y~,zr~ etc. for ~ < v. Thus Xoo is a proximal extension 

of X and a RIC weakly mixing extension of the strictly PI-system Y~ .  The 

homomorphism zroo is an isomorphism (so that Xoo = Yoo ) iff X is a PI-system. 

1.5. Remark: Theorem 1.2 was extended by R. Ellis to the non-metrizable case 

[4]. 

2. P r e l i m i n a r y  r e su l t s  

2.1. Definition: We will say that  a minimal dynamical system (Z, T) is quasi -  

B o h r  if it is an equicontinuous extension of a proximal system. We say that  it is 

n o n t r i v i a l  if the equicontinuous extension is not 1-1. (Thus a trivial quasi-Bohr 

system is either proximal or a one point system.) 

Our first theorem follows from the Ellis-Glasner-Shapiro general structure 

theorem for minimal dynamical systems, [5]. In fact it describes the first stage 

of the canonical PI tower for (X, T) . 

2.2. THEOREM: Let (X, T) be a minimal system with Ellis group G(X) = A. 

The following conditions are equivalent. 

1. There exists a minimal proximal extension 8: f (  -+ X such that the dy- 

namical system f~ admits a nontrivial quasi-Bohr factor. 

2. In the basic RIC shadow diagram (1.1) one can interpolate 

X* 

/ 
n(x) 
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with p: Z --~ II(X) a nontrivial equicontinuous extension. 

3. AG' g G. 

We say that  two dynamical systems (X, T) and (Y, T) are weak ly  d is jo in t  

when the product system (X x Y, T) is transitive. This is indeed a very weak 

sense of disjointness as there are systems which are weakly disjoint from them- 

selves. In fact, a dynamical system is weakly mixing iff it is weakly disjoint from 

itself. 

The next result is proved in [9], Theorem II.2.1. (A relative, thus a stronger, 

version is proved below, Theorem 6.3.) 

2.3. THEOREM: Let (X,  T)  be a minimal system. I f  Q (n) = X n for every n > 2 

then (X, T) is weakly disjoint from every minimal system and is thus weakly 

mixing. 

2.4. COROLLARY: A minimal proximal system is weakly mixing. 

2.5. Remark: In [9, Theorem II.2.1] the assumption is that  p(n) = x n ( V n )  

rather than Q(n) = X n, however the proof given there works also under the 

latter assumption. 

Note that,  in general, since p(u) C Q(n) the condition p(n) = x n  implies 

Q(n) = x n .  When X is metrizable the converse implication holds as well. In 

fact, choosing a countable basis {Vk : k = 1 ,2 , . . .}  for open neighborhoods of the 

diagonal An C X n, if Q(n) = Nk TVk = X n then TVk = X n for each k, so that  

TVk is an open and dense subset of X ~ and by Baire's theorem p(n) = Nk TVk 

is a dense G5 subset of X n. Thus for a metrizable system the conditions 

p(n) = x n ( V n )  and Q(,0 = X~(Vn) 

are equivalent. 

The theorem we prove next is our main tool. Again it is in the spirit of the 

general structure theorem. We first need a lemma. 

2.6. LEMMA: Let r: (X,  T)  ~ (Y, T) be a RIC homomorphism of minimal 

systems. For n >_ 2 let 

= { ( X l , . . . , x n )  �9 x n :  = 1 < i , j  < n} .  

Let u C J be a minimal idempotent. 

1. Given a point y �9 Y with uy = y we have 

U O (?.tfl'--i ( y ) )  n : 7~-l(y) n. 
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2. Hence 

cls T((uzr -1 (y) )n) = R(n). 

Proof." The RIC property of 7r implies that  u o u(Tr-l(y)) = 7r-l(y), and if 

lim~ t ,  -- u is a net in T which converges to u in M then this means that  in the 

Vietoris topology on 2 i we have lira, t,u(Tr -1 (y)) = lr -1 (y). Hence also 

l imtv(u(Tr-l(y)) x . . . x u ( T r - l ( y ) ) )  =Tr - l (y )  • 2 1 5  (nt imes)  

and the first assertion follows. 

By minimality of (X, T) and the fact that  1r is open we conclude that  

cls TTr -1 (y)n = R(n) and therefore the second assertion is a direct consequence 

of the first. 1 

2.7. THEOREM: Let 7r: (X, T) ~ (Y, T) be a RIC homomorphism of minimal 

systems. The following conditions are equivalent: 

1. the relation 

R~ 2) --- {(Xl,X2) e X x X : 7r(Xl) = 7r(x2)} 

is not topologically transitive; 

2. for some n > 2 the relation 

R~ n) = { ( X l , . . .  ,Xn) C X n  : 7r(Xi) = 7r(xj), 1 < i , j  < n}  

is not topologically transitive; 

3. there exists a nontrivial equicontinuous intermediate extension p: Z -+ Y:  

X 

Z 

Y 

4. AF' ~ F, where F = ~(Y) and A = ~ ( X )  are the Ellis groups of Y and 

X respectively. 

Proos The equivalence of the conditions 3 and 4 for a RIC extension follows 

from Theorem 1.1. 
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Assuming condition 3 we clearly have that  

R(p 2) : {(Zl,Z2) e Z x Z :  p(Zl) = p(z2) } 

is not topologically transitive and afor t ior i  

R~ 2) : {(Xl,X2 ) �9 X x X : 7t'(Xl) = 71"(x2) } 

is not topologically transitive. Thus we have 3 ~ 1 and the implication 1 ~ 2 

is trivial. 

It is therefore enough to show that  the condition A F '  = F implies that  for 

every n _> 2 the relation R(~ n) is topologically transitive. The proof will proceed 

by induction on n. We assume that  A F  I = F and that  we already know that  

T acts transitively on R(~ m) for 1 _< m < n (where R (1) = X).  We then prove 

that  also R (~) is transitive. Of course, (X, T) being minimal, the topological 

transitivity for n = 1 is clear. 

The proof consists of several steps. 

STEP 1: This is what I called in [9] the "Ellis trick". Refer to [9], Lemma 

X.6.1 for the proof. 

2.8. LEMMA: Consider the dynamical  sys tem (M,  F )  where the group F acts 

on M by right multiplication, a: p ~ pa,  a E F, p G M .  

1. There  exists a minimal  idempoten t  w C J such that  the subset  w F  C M 

is F-minimal .  

2. I f  V is a n o n e m p t y  open subset  o f  w F  then in the relative r - topology  on 

w F  

int~ cls~(V A w F )  ~ 0. 

For convenience and with no loss of generality I shall assume from now on 

that  u = w. 

STEP 2: Choose an arbitrary point Xo C u X  and let Y0 = ~'(x0), so that  

uxo = xo and uyo = Yo. Again with no loss in generality we assume that  F = 

G(Y, yo) = {~ E G : ayo = yo} and that  A = G(X,  xo) = {a  E G : aXo = Xo}. 

CLAIM: For any n o n e m p t y  open subset  U o f  uzr-l(y0) and any point  x'  = 

(x'2,. ". , x'~) e R (n- l )  with 7r(x~j) = Yo, j -- 2 , . . .  ,n ,  we have 

clsT(V • {x'))  D 7r-l(yo) x {ux ' } .  

P r o o f  o f  claim: Set V = {p c F : pxo c U}; then V is a nonempty open subset 

of F and by step 1 we conclude that  1) = int~ els~(V A F)  ~ 0. It follows that  
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for some c~ E F the set c~-11 ) is a T-neighborhood of the identity u in F.  From 

the definition of F t as ['1 cls~ O, where the intersection is over all the open T- 

neighborhoods of u in F,  we conclude that  F ~ C cls~ a - l l ) ,  hence a F  ~ C cls~ l). 

Now using our assumption F = A F  ~ = F~A we get 

c lsT(U • {x'}) Duo (U • {x'}) D u o  (Vxo • {x'}) 

D u(u o V)xo x {ux'} D u(u o (V O F))xo • {ux'} 

= cls,(V N F)xo x {ux'} D cls~ l)xo x {ux'} 

D aF'Xo x {ux'} = c~F'Axo • {ux'} 

=  Fxo • { u x ' }  = F x o  • { u x ' } .  

Now the RIC property of 7r implies u o Fxo = ~r-l(yo), hence 

clsT(U • {x '})  D u o ( F x o  • {ux '} )  =  -l(y0) • 

as required. I 

STEP 3: Let now W C R (n) be a closed invariant set with nonempty in- 

terior (relative to R(n)). Since r is an open map so is the projection map 

proj(2 ..... n): R(n) -+ R(n-D and we conclude that  W ~ = proj( 2 ..... n)(W) is a 

closed invariant set with nonempty interior (relative to R(~-I)).  By our induc- 

tion hypothesis W ~ = R (n-l) .  

Let U and V be nonempty open subsets of X and R (n-l)  respectively such 

that  ~ ~ (U • V) M R (n) C W.  We will show that  there exists a point x" E V 

such that ,  with y = ~r(x"), 

W D 7 r - l ( y )  x {xU}. 

By Lemma 2.6 there exists a point (Xl,X2,. . .  ,xn) E (uTr-l(yo)) n and t E T 

such that  t (x l ,  x 2 , . . . ,  xn) E U x V, hence (xl ,  x2 , . .  ., Xn) E t -1 (U x V). Denote 

Uo = t - lU ,  Vo = t - i V  and x' = (x2 , . . .  ,xn); then we have 

(Xl,X') E (Vo x Yo) f l R  (n) C W and xl E uTl-l(yo), x ' E  (uTr-l(y0)) n-1. 

Applying the claim from step 2 to the relatively open set U0 M 7r -1 (Yo) and 

the point x ~ E V0 M (uTr-l(yo)) n-1 we conclude that  

hence also 

W D clsT((Uo M 7r-l(yo)) x {x'}) D 7r-l(y0) x {x'}, 

W D clsT((U M ~- l ( tyo))  • {tx'}) D 7r-l(tyo) • {tx'}. 
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But this is the required property W D 7r-l(y) • {x"} (with x"  = tx' and 

y = tyo). 

With no loss in generality we assume that  W = cls intW. Then the union of 

sets of the form (U • V) N R (n) C W is dense in W and we finally conclude that  

W = R(~ ~). I 

2.9. COROLLARY: In the structure theorem for minimal systems (Theorem 1.4) 

the final weakly mixing extension 7too: Xoo -~ Yoo is weakly mixing of all orders. 

2.10. COROLLARY: 

1. A minimal incontractible system X is weakly mixing iff it is weakly mixing 

of all orders if[ it does not admit a nontrivial equicontinuous factor if[ 

AG' = G (where A = 6 (X)  is the Ellis group of X) .  

2. If  the acting group T is strongly amenable then every minimal system 

is incontractible and we conclude that every minimal weakly mixing T- 

system is weakly mixing of all orders. 

2.11. Remark: Regarding part  2 of Corollary 2.10 we remark that  results of 

[16] and [7] imply the stronger statement that  even for amenable groups every 

minimal weakly mixing dynamical system is weakly mixing of all orders. On the 

other hand, part  1 of Corollary 2.10 does not seem to follow from these papers. 

2.12. Remark: A special case of the implication 2 ::~ 3 in Theorem 2.7 is the 

well known result that  for a RIC extension of minimal systems 7r: X -+ Y, if 

R (2) is not topologically transitive then there exists a nontrivial equicontinuous 

intermediate extension p: Z -+ Y (see [1, Chapter 14, Theorem 27]). 

3. T h e  m a i n  r e su l t  

3.1. THEOREM: Let (X, T) be a minimal system. Among the conditions 

1. (X ,T )  is not weakly mixing, 

2. for some n > 2, Q(~) ~ X ~, 

3. there exists a minimal system f( which is a proximal extension of X and 

such that X admits a nontrivial quasi-Bohr factor, 

we have the implications: 1 ~ 2 ~ 3. 

In terms of the Ellis group A of X we have: AG r = G ~ Q(n) = xn (Vn  > 2) 

weak mixing. 

Proof: 1 ~ 2: Suppose (X ,T)  is not weakly mixing. By Theorem 2.3 there 

exists an n _> 2 with Q(n) ~ X n. 
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2 ~ 3: Suppose there exists an n > 2 with Q(~) ~ X n. This means tha t  for 

some open neighborhood V of the diagonal A,~ C X n the closed invariant set 

W = clsTV is a proper subset of X n with nonempty interior. 

Let 
0 X *  X < = X V n ( X )  

l 1 
{ , }  ~ n ( x )  

be the RIC shadow diagram corresponding to the trivial map X --+ {*}. Thus 

I I (X)  = {po Gxo : p �9 M} C 2 x and the minimal system X*, defined as 

X* = { (pxo ,poGxo)  : p  �9 M} C X x I I (X) ,  

coincides with the subsystem 

{(x, B ) : x  �9 B �9 n ( x ) }  c x x n ( x ) .  

The system (II (X) ,  T) is minimal and proximal and the projection map rr: X* --+ 

I I (X)  is RIC, hence also open. 

Set 

Rp) = { (x~ , . . .  , x ; )  �9 (x*)n  : ~(x;)  = ,~(x;), 1 < i , j  <_ n} 

~- { ( X l , . . . , x n , B )  �9 X ~ x I I (X)  : xj �9 B,  1 < j < n}, 

and 
W* = { ( x l , . . . , x n ,  B)  e W x I l (X)  : xj  E B,  l <_j <_n} 

= R(~ n) n { ( x ~ , . . . , x ; )  e ( x * ? :  (O(xT),.. . ,O(x;)) �9 w }  

~--- R~ n) N (0n) -1 (W) .  

Clearly W* is a closed invariant subset of R(~ n) containing the diagonal A n C 

(X*) n. Moreover, we have A* C R (n) M ( o n ) - I ( T V )  C W*, so tha t  W* has 

nonempty interior in the relative topology of R(~ *z). And we cannot have W* = 

R (n) because this will imply W = X n. Thus Theorem 2.7 applies and we obtain 

a commutat ive diagram 

X* 

n(x) 
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where p: Z --+ II(X) is a nontrivial equicontinuous extension. This completes 

the proof of the implication 2 ~ 3. (The Ellis group picture here is as follows. 

Let ~(X)  = G(X*) = A and G(Z) = B. Since 1-I(X) is proximal we have 

G(II(X)) = ~({.})  = G. Since p is an equicontinuous extension we have G' = 

6( I I (X)) '  C ~(Z) = B and therefore AG' C BG' = B ~ G.) 

Finally, in view of Theorem 2.2 the condition AG' = G is equivalent to the 

negation of condition 3 and we obtain the last assertion of the theorem as the 

contrapositive of the first part.  I 

As we will see in the next section, unlike the case of an abelian group, for a 

general acting group the converse of Theorem 3.1 is no longer true. 

4. T h e  va r ious  de f in i t ions  o f  weak  mixing 

4.1.THEOREM: 

1. There exists a quasi-Bohr system (X ,T)  (in fact a nontrivial group 

extension of a proximal system) which is weakly mixing of all orders. 

(In particular for this system G' C A and AG' -- A 7~ G.) 

2. There exists a quasi-Bohr system (X, T) (again a nontrivial group exten- 

sion of a proximal system) which is weakly mixing yet with Q(3) ~ X 3. 

3. There exists a quasi-Bohr system (X, S) for which Q = Q(2) = X x X yet 

(X, S) is not weakly mixing. 

Proof'. 1. Consider the dynamical system (X, T),  where 

T = {g E GL(2, ~) : det(g) = 4-1} 

is acting naturally on the compact space X of rays emanating from the origin 

in ~2. We have topological transitivity of X x X because T acts (literally) 

transitively on X x X \ (A U (id x a)A),  where a is the map induced by the flip 

(x, y) ~ ( x , - y )  on ]~2. 

On the other hand, the map 7r: X --+ Y, which sends a ray to the unique 

line which contains it, is a group extension (two to one) of the proximal system 

(Y, T), where T acts on the projective space Y of lines through the origin in R2. 

Thus (X, T) is a weakly mixing quasi-Bohr system (with AG' = A # G). 

As was noted by S. Mozes (see [21]) the dynamical system (X ,T)  presented 

above has the property that  T - -  whose elements preserve the cross ratio of four 

points on the circle - -  acts transitively on X 3 but not on X 4. Even if we give 

up linearity we still have the problem that  the group of all homeomorphisms 
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of the circle is not 4-transitive. However, we can overcome this difficulty if we 

go up one dimension and take X to be the space of rays emanating from the 

origin in li~ 3 (i.e. X is homeomorphic to the sphere $2). We choose a countable 

dense subgroup T of the Polish group Hi(X)  of all (not necessarily linear or 

orientation preserving) homeomorphisms of X which preserve lines through the 

origin in R3. Again (X, T) is a group extension 7r: X --+ Y, where the proximal 

factor Y is the projective plane comprising all lines through the origin in It~ 3 . It 

is not hard to check that  (X, T) is weakly mixing of all orders. 

2. Let X be the unit circle in the complex plane {x C C : I x ] = 1}. Let 

m: X --+ X be the McMahon map with two fixed points, explicitly: 

m (exp 27r i t ) -- exp 27ri ( 2 ( t - [ 2-~ ) 2 + [ 2--~ ) , O < t < 1. 

Let a: X ~ X be the antipodal map a(x) = - x ,  let c: X --+ X be the con- 

jugation c(x) = ~, and let R be an irrational rotation. We define T to be the 

group generated by m, c and R. Clearly the map a commutes with each element 

of T. Thus if It: X --+ Y = X~ < a > denotes the map from the circle to the 

projective line, we see that  ~r: (X, T) -+ (Y, T) is a homomorphism, in fact a 

Z2-extension. 

CLAIM 1 : ( X,  T) is minimal and weakly mixing. 

Proof." Minimality is clear as already (X, R) is minimal. Weak mixing is most 

easily seen as follows. Observe first that  Y is minimal and proximal hence 

weakly mixing (Corollary 2.4). Now if (x, x ~) C X x X projects onto a point 

with dense orbit in Y x Y, then, since on X we can rotate at any angle and 

reverse the orientation, we see that  also (x, x ~) has a dense orbit in X x X. 

CLAIM 2: Q(3) is not all of X 3. 

Proo~ The set 

W = {(x ,y , z )  E X 3 : x , y  and z do not lie in an open semicircle} 

is a closed invariant set with nonempty interior that  does not contain the diag- 

onal. Clearly the points of the interior of W do not belong to Q(3). 

3. Let (X, S) be as in part 2, where we now restrict the action to the subgroup 

S of T generated by m and R. For an ordered pair (x, x') C X • X let us denote 

by / ( x ,  x ~) the angle measured counterclockwise from x to x ~. We then have 

P ( X , S )  = X x X \ { ( x , - x )  : x E X } ,  hence Q = P = X x X. However, the 
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set {(x,x') : s  _< 7e} is a proper closed invariant subset of X x X with 

nonempty interior. Thus (X, S) is not weakly mixing. | 

The idea of the example in part 2 of Theorem 4.1 was suggested by J. Aus- 

lander. The details were then clarified with the help of E. Akin. I thank them 

both for letting me include this result in the paper. 

I end this section with the following diagram which sums up the known re- 

lations between the various "weakly mixing" notions for minimal systems. The 

class of minimal dynamical systems which are weakly disjoint from every min- 

imal system is denoted by M I N  x. The implication n - W M  -~ Q(n) = X n, for 

each n _> 2, follows easily from the definitions. The other implications follow 

from Theorems 3.1 and 2.3. 

n-WM(Vn) 

Q(n) = x (vn) 

A G '  = G 

> M I N  x > W M  > Q(2) = X 2 

The example of a minimal proximal system which is not weakly mixing of 

order 3 (see the introduction to this paper) shows that the top slanted arrow 

in this diagram cannot be reversed. The example presented in Theorem 4.1.1 

shows that the bottom slanted arrow cannot be reversed. Theorem 4.1.2 shows 

that the implication Q(n) = Xn(Vn) _+ W M  cannot be reversed, and finally 

Theorem 4.1.3 shows that also the implication W M  -+ Q(2) = X 2 cannot be 

reversed. 

5. A p r o p e r t y  which  is an Ellis g r o u p  invariant  

We say that a property of minimal dynamical systems is an Ellis g r o u p  invari- 

ant  if whenever it holds for a given minimal system it also holds for every other 

minimal system with a conjugate Ellis group. Equivalently iff it is preserved 

under proximal factor maps and proximal extensions. 

When T is abelian it is well known that for minimal systems weak mixing is 

an Ellis group invariant. For general acting groups we have: 

5.1. PROPOSITION: For minimal  sys tems  the proper ty  

p(~) = X~(Vn) 
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is an Ellis group invariant. 

In the proof we will use the following definition and lemma (due to J. Aus- 

lander). 

5.2. Definition: Let Y and Z be compact spaces. A continuous map p: Y --+ Z 

is called s e m i - o p e n  if intp(U) ~ 0 whenever U C Y is a nonempty open subset 

of Y. 

5.3. LEMMA: Let Y be a minimal dynamical sys tem and p: Y -+ Z a homo- 

morphism. Then the map p is semi-open. 

Proo~ Let U C Y be a nonempty open set. Choose a nonempty open V 
t n such that  V C U. By minimality there is a finite sequence { i}i=x such that  

Y = Ui=l t iV.  Applying p we have Z = U n n i=1 t ip(V) and it follows that  for 

some i, inttip(V) ~ 0, whence also intp(V) ~ 0 and afor t ior i  intp(U) ~ 0. 

I 

Proof  of  Proposition 5.1: Clearly this property is inherited by factors, hence 

in particular by proximal factors. Suppose 7r: (X, T) --+ (Y, T) is a proximal 

extension of minimal systems such that  p(y)(n)  = yn .  Let U1 • U2 x . . .  • Un 

be a nonempty basic open subset of X n. Since 7r is semi-open (Lemma 5.3) we 

have V~ = int~r(Ui) ~ 0 for i = 1, 2 , . . . ,  n. By assumption there exists a point 

(Y l ,Y2 , . . .  ,Yn) C (V1 • V2 •  • Vn) A P ( Y )  (n). For each i choose some xi C Ui 

with 7r(xi) = Yi. It is easy to see that  the fact that  Ir is a proximal extension 

implies that  (xl, x 2 , . . . ,  Xn) �9 (U1 • U2 x . . .  x Un) ["1 P ( X )  (n) and the proof is 

complete. I 

I do not know which of the other properties appearing in the diagram at the 

end of Section 4 (except of course for the property AG ~ = G) is an Ellis group 

invariant. 

6. T h e  r e l a t i v e  c a s e  

A relative version of Theorem 2.3 for open extensions holds. It first appeared 

in J. C. S. P. van der Woude [22]. For completeness I enclose the proof, a 

straightforward extension of the proof of Theorem II.2.1 in [9]. 

6.1. LEMMA: Let p: Y --~ Z be a semi-open map; then p(U) C cls(intp(U)) for 

every nonempty  open U C Y .  

Proof: Fix y C U, set z = p(y) and let V be an arbitrary open neighborhood 

of z. By continuity of p there exists an open neighborhood A C U of y such 
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that  p(A) C V. Since p is semi-open we have int(p(U)) D int(p(A)) ~ 0. Thus 

every neighborhood of z meets int(p(U)), hence z E cls(intp(U)). | 

6.2. LEMMA: Let X and Y be minimal systems, 

X Y 

Z 

a common factor, and suppose that 7r is open. Then for every nonempty re/a- 

tively open subset D of the corresponding relation 

R~,p = { (x ,y ) :  ~(x) = p(y)} 

there exist open subsets U C X and V C Y such that 

O ~ (U x V) n R,,p c D, and ~(U) = p(V). 

Proof: Since we assume that  D C R.,p is relatively open and nonempty there 

are open subsets U' C X and V' C Y such that  0 ~ (U' • V') A Rr,p C D. Let 

~: R.,p -} Z be defined by ~(x, y) = 7r(x) = p(y). It is easy to check that  

• v ' )  n : n ; ( V ' ) .  

By Lemma 5.3, p is semi-open and by Lemma 6.1, we have p(V') C cls(intp(V')). 

Since by assumption 7r(U') is open we conclude that  int(p(V'))NTr(U') ~ ~. Thus 

O := int(p(V') N 7r(U')) ~ 0. We now observe that  the sets U = ~r-l(O) V} U' 

and V --- p- l (O)  A V ~ satisfy the required properties. I 

Here is then a relative version of Theorem 2.3. 

6.3. THEOREM: 

I. Let X and Y be minimal systems, 

X Y 

Z 

a common factor and suppose that 7r is open. Suppose that  for some 

Zo E Z and every n > 2 we have p(n) f3 (7c -1 (Zo)) n is dense in (Tr -1 (zo))n; 

then the system R~,p is topologically transitive. 
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2. In particular, for X = Y metric, we conclude that  i f  Q (n) = R (n) for every 

n >_ 2 then 7r is a weakly mix ing  extension. 

Proof'. 1. Let W be a closed invariant subset of R~,p with a nonempty interior. 

By Lemma 6.2 there exist open subsets U C X and V C Y such that  

0 r  MR~,pCintW,  and 7 r (U)=p(V) .  

Since the property of zo is shared by every point of its orbit Tzo, we now assume 

with no loss in generality that  for some Xo E U we have, with z0 = It(x0), that  

p(n) M (Tr-l(zo)) n is dense in (Tr-l(z0)) n for every n _> 2. By minimality of 
n 

Y there exists a finite sequence h , t 2 , . . . , t , ~  in T such that  Ui=l t i V  = Y 
m 

and by relabelling we have, for some 1 _< m < n, Ui=I t i v  D p- l (zo)  and 

t i V  M p-l (zo)  r 0 for every 1 < i < m. (By allowing repetitions we can assume 

that  2 _< m _< n.) 

Consider the set t l U  x t2U x . . .  x tmU. We choose, for each I _< j _< rn, a point 

vj E V with t j v j  = yj E p-l (z0)  and then a point uj E U with 7c(uj) = p(vj) .  

Then we have 7r(tjuj) = tjTr(uj) = t jp(v j )  = p( t j v j )  = Zo, so that  

( t l u~ , t 2u2 , . . .  , tmUm) E ( t l U •  t2U x . . .  x tmU)VI (Tr-l(z0)) m. 

Thus 

O := ( t lU  • t2U x . . .  x t,~U) M (71-l(z0))  m 

is a nonempty relatively open subset of (Tr - l (zo))  m. By assumption there is 

then a point ( x l , x 2 , . . .  ,Xm) C 0 n p(m).  

Next let (x, y) be an arbitrary point of R~,p, with say z = It(x) = p(y),  and let 

D be a relatively open neighborhood of (x, y) in R~,p. A second application of 

Lemma 6.2 yields open sets A C X and B C Y such that  !~ r (A x B)NR~,o  C D 

and 7r(A) = p(B) .  

Pick some a E A; then, as X is minimal, there exists a net Sk E T with 

lim sk (Xl, X 2 , . . . ,  Xm) = (a, a , . . . ,  a). 
! 

Eventually, for every 1 _< i <__ m, we have SkXi = sktiu~ E A with ui E U, 

hence 7r(skx~) = 7r(sktiu~) E 7r(A) = p(B) .  Since 7r(xi) = z0 for every i, we have 

skzo = 7r(skxi) = p(b) for some b C B. Thus P(sklb)  = Zo, hence sk lb  E p- l (zo)  

and therefore Sklb  C uim=l t iV .  We fix io with Sklb  E tio V .  

We now have on the one hand (sktioU~o, b) C A x B and on the other 

(sktioU~o,b) "" , s - l b ,  = 8 k ~ i o U i o  ' k ) 

C sk(tio U X tio V)  

= sktio(U x V)  C s k W  = W. 
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Thus (A • B) N W ~ O and since D D A • B was an arbitrary neighborhood 

of (x, y) E R~,p we conclude that  (x, y) E W; i.e. W = R~,p. 

2. We note that  for metrizable X, as in Remark 2.5, the conditions ,Q(n) = 

R (n)'' and ,,p(n) is dense in R (n)" are equivalent. Since the map ~r: X --~ Z 

is open it follows that  also 7rn: R(~ n) --4 Z is an open map. Next observe that  

p(n) is a G6 subset of R (n) hence a dense G6 by our assumption. We can now 

apply a topological version of Fubini's theorem (see for example [11, Lemma 5.2 

and the following remark]) to conclude that  for a dense G6 subset Z0 C Z the 

intersection P(~) n (Tr-l(z0)) n is dense in (Tr-l(zo)) n for every z0 E Zo. Now 

apply part  1 to complete the proof. II 

6.4. COROLLARY: Let X be a minimal dynamical system and 7r: X --4 Y a 

proximal open homomorphism. Then 7r is a weakly mixing homomorphism; i.e. 

the system R~ is topologically transitive. 

6.5. Definition: Let 7r: (X, T) --4 (Y, T) be an extension of minimal systems. 

We will say that  a minimal dynamical system (Z, T) is a r e l a t i v e  q u a s i - B o h r  

f a c t o r  o f  X ove r  Y if there is a commutative diagram 

r 
X - Z  

l 
where 0 is a proximal extension and p is an equicontinuous extension. We say 

that  it is n o n t r l v l a l  if the equicontinuous extension p is not 1-1. 

We are now ready to state the relative version of the main theorem (Theorem 

3.1). 

6.6. THEOREM: Assume X is metric and let 7r: ( X , T )  ~ ( K T )  be an open 

extension of minimal systems (with Ellis groups A = G(X) and F = G(Y)).  

I f  7r is not a weakly mixing extension then there exists a minimal system 

which is a proximal extension of  X and such that f (  admits a nontrivial relative 

quasi-Bohr factor over Y .  (An equivalent statement is as follows. The condition 

AF '  = F implies that 7v is a weakly mixing extension.) 

Proof." Repeat the arguments in the proof of Theorem 3.1 with the obvious 

modifications. Of course we use Theorem 6.3 instead of Theorem 2.3. For the 

interested reader here are the details. 
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Suppose 7r is not a weakly mixing extension. Then by Theorem 6.3 there 

exists an n _> 2 with Q(n) 7~ R(n). This means that  for some open neighborhood 

V of the diagonal A n in R (n) the closed invariant set W = clsTV is a proper 

subset of R (n) with nonempty interior. 

Let 

X r X * = X V Y *  

Y ~ y* 

be the RIC shadow diagram corresponding to the map lr: X -~ Y. Thus Y* = 

{p o Fxo : p  E M} C 2 x and the minimal system X*, defined as 

X* = {(pxo,po Fxo) : p E M} C X x Y*, 

coincides with the subsystem 

{(x ,B)  : x E B E Y*} c X x Y% 

The homomorphism 0 and 0* are proximal and the projection map 7r*: X* --+ Y* 

is RIC, hence also open. 

Set 

R(~. ) = { ( x ~ , . . . , x * ~ ) E ( x * ) ~ : ~ * ( x ~ ) = ~ * ( x j ) , *  l < i , j < n }  

{ ( x l , . . .  , xn ,B)  E X n • Y *  : x j  E B, 1 < j < n}, 

and 

W* = { ( x l , . . . , x ~ , B )  E W x Y*:  xj E B, 1 <_ j <_ n} 

* . . .  X* * . -~- R (n) N { ( X l ,  , n )  E ( x * ) n  : ( 0 * ( X l ) , . .  ,O*(X*n) ) E W }  

= n ( ( 0 * ) n ) - l ( w ) .  

Clearly W* is a closed invariant subset of R(~. ) containing the diagonal A n C 

(X*) n. Moreover, we have A* C R (n) M ((O*)n)-I(TV) C W*, so that  W* 

has nonempty interior in the relative topology of R(,rn. ). And we cannot have 

W* = R(~. ) because this will imply W = R~ n). Thus Theorem 2.7 applies and 

we obtain a commutative diagram 

X * 

y .  
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where p: Z -+ Y* is a nontrivial equicontinuous extension. This completes 

the proof of the theorem. (The Ellis group picture here is as follows. Let 

G(X) = G(X*) = A and G(Z) = B. Since Y* is a proximal extension of Y 

we have ~ ( Y * )  = G(Y)  = F.  Since p is an equicontinuous extension we have 

F '  = G(Y*) '  C G(Z)  = B and therefore A F '  C B F '  = B ~ F. )  | 

6.7. Remark:  The condition that ~ be an open extension in Theorem 6.6 is 

clearly necessary. There are easy examples of extensions 7~: (X, T) -+ (]I, T) of 

minimal systems such that 7~ is an almost 1-1 (hence a proximal) extension yet 

7r is not a weakly mixing extension. To mention one specific class of examples 

we observe that every Toeplitz minimal Z-system X is an almost 1-1 extension 

of its maximal equicontinuous factor Y and that for some such systems the 

extension is weakly mixing while for others it is not. 

7. Generalized Bohr compactifications 

Recall the following definition\theorem from [9], Chapters VIII and IX. 

7.1. Definition: Let T be a topological group. 

1. A minimal dynamical system (X, T) is called a compactification system 
for T if it is a group extension of a proximal system. Equivalently, iff the 

group Aut(X, T) of automorphisms of (X, T) is compact (in the topology 

of uniform convergence) and for every pair of points x, y E X there exists 

an automorphism r E Aut(X, T) such that r is proximal to y. 

2. There exists a universal compactification system for T 

x -+ X / K  ~ rI(T), 

and the compact Hausdorff topological group K = Aut(X, T) is called the 

generalized Bohr compactification of T. 

3. The Ellis group of (X, T) is the derived group ~(X) = G I, where G = 

Aut(M) is the group of automorphisms of the universal minimal system 

(M, T). Therefore K ~- G / G ' .  

Using the terminology of Section 3, we see that every compactification system 

is quasi-Bohr, and the canonical minimal group extension associated with every 

quasi-Bohr system is a compactification system. 

In this short section I would like to point out some new results concerning 

generalized Bohr compactifications of some Polish topological groups which fol- 

low from recent works of Pestov, [17], and Glasner and Weiss, [13] and [14]. I 
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remind the reader that a topological group T has the fixed point  on com- 

pac ta  p r o p e r t y  if it has a fixed point whenever it acts on a compact space 

([12]). This of course is equivalent to the fact that the universal minimal sys- 

tem (M(T), T) is the trivial one point system. Recently a large supply of new 

examples of such groups, including a monothetic Polish group, was discovered 

(see e.g. [12] and [18]). 

7.2. THEOREM: 

1. There exist topological groups with trivial generalized Bohr compactifi- 

cation; in fact this is the case for every group with the fixed point on 

compacta property. 

2. Let L = Homeo(S 1) be the Polish group of homeomorphisms of the circle 

S 1 with the topology of uniform convergence. The natural action of L 

on S 1 is the universal minimal system as well as the universal minimal 

proximal system. In particular L = Homeo(S 1) has a trivial generalized 

Bohr compactification (see [17]). 

3. Let H = Homeo(E) be the Polish group of homeomorphisms of the Cantor 

set E equipped with the topology of uniform convergence. The universal 

minimal system (M(H),  H) is nontrivial and the topological space M ( H) 

is homeomorphic to a Cantor set. Explicitly it is Uspenskij's space of 

maximal chains on E. Moreover, the system (M(H),  H) is proximal so 

that (M(H),  H) ~ (II(H), H) is also the universal minimal proximal H- 

system. Finally, the generalized Bohr compactification of H -- Homeo(E) 

is trivial (see [14]). 

4. Let S = So(Z)  be the Polish topological group of all permutations of the 

integers equipped with the topology of pointwise convergence. The uni- 

versal minimal S system is again a Cantor set. Explicitly it is isomorphic 

to the natural action of S on the compact space of linear orders on Z. 

Moreover, M ( S) is also the universal compactification system for S with 

M(S) ~ M(S) /Z2 ~- H(S) so that Z~, the group with two elements, is 

the generalized Bohr compactification of So(Z)  (see [13]). 

The search for examples of Polish groups with more interesting generalized 

Bohr compactifications is an intriguing project. An outstanding question in 

this plan actually regards semisimple Lie groups. In [10] I have shown, using 
M. Ratner's machinery, that for SL(2, ~) there are minimal proximal actions 

which are not strongly proximal. This result, however, depends very much on 

the existence of non-arithmetic lattices. Thus the question whether for a higher 

rank semisimple Lie group every minimal proximal action is actually strongly 
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proximal is still open. And, if indeed this is the case, then the identification 

of the generalized strong Bohr compactification of a connected semisimple Lie 

group G as b(A) • M mentioned in the introduction will hold true for the 

generalized Bohr compactification as well. 
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